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1. INTRODUCTION

Let r be a Jordan curve in the finite z-plane whose interior and exterior
are denoted by Int r and Ext r, respectively, and let ,,? be a family of
complex-valued functions defined on r. The foHowing question has a long
history in approximation theory: Find a sequence of point sets {Sn};~l'

where S" = {Z"I.;}~~l consists of n (distinct) points on T, such that the
polynomials L,,[f; .] of degree at most n - 1 which interpolate to a fixed
but arbitrary function f E fF on S" converge on Int r. Implicit in this is
the assumption that the limit function F = limn->OJ L,,[f; .] has an appropriate
relation to f

Present knowledge is satisfactory only in the case where .'F is the family
of functions analytic on r U Int r. For this case, Fejer (8, Section 7.6]
proved that limn->OJ L,,[f; z] = fez), uniformly on T IJ Int T, if and only i:'
the sets S" are uniformly distributed on r. We refer to [8] for the definition
of uniform distribution. Curtiss [1-3] has studied this question in the case
where ,# = Yf(T), the family of functions continuous on r. He proved that
if r is sufficiently smooth and if the sets Sn consist of the images of the roots
of unity under a suitable mapping function, then for z E Int r one has

1" L [f] 1 ( 1W 7
V

1m n ; Z = -2. I' y_.- as·
n->OJ TTl J r s - z
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In [6J the author indicated permissible perturbations of the sets Sn which
maintain the conclusion of Curtiss's theorem. In this paper we consider
the question for ff = ri'(r), r being a piecewise smooth curve with corners
of certain types. The only previous results for nonsmooth rand '6'(r) are
in [5] where only certain cusps were allowed. We refer the reader to [2] and
[8] for surveys of the problem and its history.

2. DEFINITIONS, NOTATION AND PRELIMINARIES

We suppose that the origin of the z-plane is contained in Int r and that
the logarithmic capacity of r is 1. Let z = <P(w) be the one-to-one conformal
mapping of the exterior of the unit disc in the w-plane onto Ext r, normalized
by the conditions <P((0) = 00, <P'((0) > O. There is a natural parametrization
cP of r obtained by extending <P to a homeomorphism of I 11' I ?': 1 onto
r u Ext r and setting ep(t) = <P(e21Tit), 0 ~ t ~ 1. Extend the domain of
definition of rP to all real values of t by periodicity.

In this paper we consider a relaxation of the smoothness conditions
imposed by Curtiss. In particular, suppose that r possesses a continuously
turning tangent except at a finite number of points PI'.'.' PK, at which we
suppose r to have half tangents with interior angle 7Tf3j, 0 < f3j < 2,
j = 1,2,... , K. For eachj, the region Qj in the ~-plane defined by

Qj = \I~ : ~ = l_ .l., Z E Ext rl
z Pi

is a bounded simply connected region not containing the origin. Thus there
is a single valued branch of ~I/(Z-Ili) defined on Q j • Introduce

'1 I 11/(Z-f3;)
@(w) = ,----

I <P(w) Pi
(2)

and note that 3 = e(w) maps I IV I > 1 one-to-one and conformally onto
a Jordan region Q* in the 3-plane. Moreover, the origin of the 3-plane is a
boundary point of Q* and 8Q* has a tangent there. As before, e can be
extended to , 11' I ?': 1 and the function

(3)

provides a parametrization of aQ*. We suppose 8 to be defined for all
values of t by periodicity.
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DEFINITION 1. r is said to possess an admissible corner at Pi if

(i) 0 < f3j < 1,

(ii) there exists a constant 7J > 0 such that

201

eel) = c(t + th(l)),

where h is continuously differentiable (as a function of t) in I t I <"fJ, h(O) = 0,
and h' has a modulus of continuity w which satisfies

J
'7I w(u)
--du < ro,

o u

DEFINITION 2. A Jordan curve is said to be admissible if

(i) it has a continuously turning tangent except at a finite number of
admissible corners {Pj},

(ii) there is an integer N and a real number '1' such that

{Pj} C {z: z = <p[(k/N) + '1'], k = 1,2,..., N}.

Clearly these conditions are of quite different types. The first specifies
the local behavior of the curve in a neighborhood of a corner and the second
stipulates how the corners are distributed over the curve. Set inclusion in (li)
may be proper, that is, the number of corners may be much smaller than N.
A number of geometric conditions on r which guarantee its admissibility
can be deduced from theorems of LindelOf, Ostrowski, and Warschawski
[4, 7]. As examples of admissible curves r we cite any regular polygon,
and the curve r specified by

r = {z: \ z(z - 2): = 1, Re z < I}.

Let !7 be the set of preimages on the unit interval of the corners {Pi},
i.e., !7 = {s: 0 < s < 1, <p(s) E{p;}}. Then for S E [0,1) "'!7 define

and

! wi;;? 1, 1V =1= e2'1ris,
(4;

o<t<1. (5)

Extend if; by periodicity to all real t. The following lemma can be proved by
an application of the Cauchy integral theorem to the function w-liog pes, w)
which is holomorphic in I w \ > 1 and continuous on! wi;;? 1 (cf. [1]). Here
that branch of the logarithm is selected for which lim\y,I...,,,, log P(s, w) = O.
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1
LEMMA 1. Jfs E [0, 1) '" !/' then Jo log if;(s, t) dt = O.

Let Sn = {Znk}~~l and form the fundamental polynomials wnCz) =

n:=l (z - Znk)' The Lagrange polynomial Ln[f; 'J which interpolates on
the set Sn to a functionJ defined on r is given by

Following Curtiss f2J we are led to consider, for Z E Int r,
lim wn(z),
Jl-')OO

and
n

II L,,['; z] II = L IWn(z) I I Wn'(Znk){Z - znk)I-I .
k~l

Known techniques [1,6] give

LEMMA 2. Jfr is admissible and

(6)

(7)

where Tn are real numbers depending on n but not on k, then limn-.cc wn(z) = 1
uniformly on closed subsets oJlnt r.

It follows from [2J that for Sn as in Lemma 2 a sufficient condition for (1)
to hold uniformly on closed subsets of Int r for any J E CCer) is that the
sequence of norms {II L n [·; z]II}~~'l be uniformly bounded for z in any closed
subset of Int r. The major portion of this paper is devoted to establishing
this boundedness.

3. ApPROXIMATE QUADRATURE AND OTHER LEMMAS

In this section we collect some technical lemmas which will be used later.
The first two can be viewed as error estimates for particular numerical
integration schemes. Lemma 3 is well known [I] and is stated here only for
completeness. The second is more interesting. It provides a uniform estimate
for the error in approximate quadrature of a family of functions each of
which has no more than a logarithmic singularity.
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LEMMA 3. Let f be absolutely continuous on [a, b] and let 11 be a posith'e
imeger. Then

I If1a+ k(b-a»)_IlJ·lf(t)dtl~f"!!'(t)idt.
I I.:~l \ no,.,"

LEMMA 4. Let f be defined on the rectangle 0 ~ s ~ I, a ~ t ~ b with
the poil1t (s, t) = (0, a) deleted by

f(s, t) = loges + t - a).

For each positive integer n set tnlc = a -+- (k - ~)(b - a)!n, k = 1,2,... , n.
Thenfor all s, 0 ~ s ~ 1, andJar n = 1,2,... ,

I
n d I"!::/(s, tnk) - 11 J/(s, t) dt I ~ 1. (8)

Proof Making a change of scale on the t-axis if necessary, we :nay
assume a = °and b = 1. Straightforward integration gives

f"l ( + " l(l + s) log(l + s) - slog s - 1,
og\s t) at = -1 = 0o , s •

0< s ~ 1,
(9)

We prove (8) for s > 0, and since the left-hand side is a continuous function
of s at s = 0, the desired inequality holds for s = 0 as '''ell. We begin by
observing L"lat

n[(l + s) log(l + s) - slog s - 1 + log 11]
n

= L [(k + ns) log(k + ns) - (k - 1 + 11S) log(k -- 1 + ns) -- 11,
k~l

and using this together with the explicit fOfm of tnk in the left-hand side of(8),
which we denote by R(s), we obtain

\" , k-1.) I
R(s) = I L log (s + __2_ - n[(l + 5) log(l + s) - slogs - 1)1

k=l \ n ,

_I ~'\1 (k - t + 115) _ (k _ 1 + )1 (I k + ns 'I --L. d i
- L, og k 11S og" , I·' \ !

, k=l + ns ,k - 1 i- 11S' , I



204 THOMPSON

Here e(n, s) is the term corresponding to k = I in the second sum; it can
be bounded by routine methods. Each of the logarithms occurring in the
sum in the last expression can be expanded in a Taylor series and the resulting
double sum will have the form

I

n \ 00 (-l)i+l 00 (_1)i+1 !I
I:2l~1j(2k - 1 + 2nsY + j~ j(k - 1 + ns)j-l - 1\ .

(10)

Writing out the series in the curly brackets in (10) and rearranging terms,
we have

(2k - ; + 2ns - 2k - } + 2nJ

+ (3(k - : + ns)2 - 2(2k - : + 2I1S)2) - '"

-1
(2k - I + 2ns)(2k - 2 + 211s) + a2 - aa + a4 - ••••

An easy calculation shows that Gj );; Gj+1 > 0 for all j ;;? 2, and therefore
the series L;:2 (-lY aj converges to a sum A, 0 < A < a2. Also
a2 < [(2k - 1 + 2ns)(k - I + ns)]-l so the entire series in curly brackets
converges to a sum Ak(s) with

I Ak(s)i < 4(k _ : + ns)2 < 4(k ~ 1)2 ' k ;;? 2.

Using this and easily computed bounds on e(n, s), we finally have

1 00

R(s) < 4: L: k-2 + e(n, s) < 1.
k=l

The purpose of the next lemma is to use the conditions associated with
admissibility to obtain a representation of if; which is valid for sand t near
certain critical values.

LEMMA 5. Let r be an admissible curve with interior angle 13FT at the
corner pj = o/(Sj), j = 1,2,... , K Then for each j, j = 1,2,... , K, there is a
positive number 0 = OJ and a function X = Xj defined on

D = {(s, t): 0 ~ , t - Sj' ~ 0, 0 < Is - Sj , ~ o}

and satisfying

(i) if;(s, t) = Xes, t)(1 t - Sj I + I s - Sj D1-llj, (S, t) ED,
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(ii) for each s, 0 < Is - Sj i =(; 0, the function X(s,') is absolutely
continuous on 0 =(; I t - Sj I =(; 8,

(iii) there are constants m > 0, M1 and M 2 such that

.8;+8 I dx 1

Js-8 I di (s, t) Idt =(; M 2 ,
J

(s,t)ED,

°< : S - Sj I ~ 5.

Proof There is no loss of generality, and the computations are easier,
if we assume Sj = O. We will show that suitable 8 and X exist for s > 0,
t ~ O. The details for the remaining portions of D are similar. We set
,8 = f3j , cx = 2 - f3j •Then CX7T is the exterior angle at pj = p and 1 < Cl < 2.
Since if> maps Iwi> I onto Ext r it is the exterior angle which naturally
occurs in our approach to the problem. By (4) and (5) we have for sand t
sufficiently small, S --J- 0,

II ¢U) - -'!p(s) I
1f(s, t) = e21Tit - e21Tis I'

I ¢'(S)!j27T,

t =1= s,

t = s,

where the prime denotes differentiation. Henceforth we will consider only
the first of these expressions, and assume that the obvious extension is
made for t = s. Also, by (2) and (3), recalling that f3 = 2 - cx,

I
1-1

¢(t) = [e(t)]'" +pI
and consequently

J; S t = I [eCt)]" - [8(s)]" I
, (,) {[e(t)]" + (ljp)}{[e(s)]" + (ljp)}(e21Tit - e21Tis) \

= \ [e(t)]" - [8(s)]'" I ( )g s, t .
t-s

It follows from the properties of 8 and the exponential function that for
sufficiently small 0 > 0 the function g(s, .) is continuously differentiable on
o =(; t ~ 0 and there are constants m, M 1 ,M2 such that 0 < m =(; g(s, t) ~ M1 ,

o =(; t ~ 0, 0 < s =(; 8, and I(dgjdt)(s, t)\ =(; .M2 , 0 ~ t ~ 0, 0 < s =(; S. The
proof of the lemma will be completed by showing that the function

G(s, t) = Iteet)]; =~e(s)l" I(s + 1)1--"
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satisfies the conditions required of X in (ii) and (iii) above. By the admissibility
of r we have B(t) = crt + th(t)], and hence

G(s, t) = I c I~ Itan + het)]'" - sa(1 + h(s)]'" (s + t)l-'" I
t-s

I[ta S"']= I c I'" t - s (t + S)l-a(1 + h(t)]'"

+ s~ \ (1 + h(t)]'" - [1 + lI(s)]'" 11 (11)
(s + t)"-l t t - s I .

Consider first the function

(t
a

"')res, t) = ~ (t + S)l-"'.
t-s

For each fixed s this function is positive, absolutely continuous, monoto
nically increasing from 1 to a21-o: as t increases from °to s, and decreasing
as t increases from s to o. The total variation of res, .) in [0,0] is less than
2[a21- a - 1] and therefore

j'6 j dr I
o dt (s, t) Idt < 2(a21

-
a - 1)

for all s, 0 < s ~ O. Also, h is continuously differentiable on [0, 0] and
limho h(t) = 0 which implies that the function [1 + h(t)]o: is absolutely
continuous, and bounded above and away from zero for t sufficiently small.
It follows that the product res, t)[l + h(t)]'" has all of the desired properties.

We continue the proof by showing that the remaining term in (11) has
the desired properties and, moreover, can be made as small as we choose
by selecting 0 small enough. Then the sum of both terms in (11) satisfies (ii)
and (iii). It is clear that the term saCs + t)l-O: is absolutely continuous, has a
uniformly bounded total variation for °< s ~ 0 and can be made small
by taking 0 small. We turn to the term

H(s, t) = {[I + h(t)]o: - (1 + h(s)]o:}j(t - s).

It follows from the differentiability assumption on h that for each fixed s
the function H(s, -) is bounded and absolutely continuous on [0,0]. We
show now the existence of a constant M satisfying

6) dH IL dt (s, t) dt < M (12)
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for a:l s eo (0, S]. To this end, set mCt) = [1 + h(t)]'''. Since limt-;o h(t) = {}
Vie see that m is differentiable on [0, 8] for I) sufficiently smalL Letting prime
dee.ote differentiation, we have

H '(e t) -- IJ,t ['"l'(t) 11 0 ,(,,')1 ,1;,(/(+ o,,:!"', - J If - l- /.. j ::'lp!i L - .)j •
\ s ).

(13)

If w denotes the modulus of continuity of h' then the modulus of continuity
WI of m' satisfies Wl(X) ~ K max[w(x), x] for some constantK and sufficiently
small x. Thus, if f~ w(u)lu du is finite, then so is J~ (Ul(U)/U duo From (13)
we obtain

1 ['It--si -/ 1

\ H'(s, t)[ ~ I JG wl(u) duj/ (t - 5Y\

and consequently

J,.O I H'(s, t): dt ~ 2 r lrrWl(U) duJ' jX2dx
o '0 '0 '

Here M l is a constant which depends only on (.:)1 and 1) so that (12) is estab
lished and the proof of the lemma is complete.

4. A THEOREM FOR CURVES WITH ONE CORNER

In order to indicate the flavor of the proof and at the same time keep the
technical difficulties to a minimum, we consider first a special case. A YDOre
general theorem is given in Section 5.

THEOREM 1. Let r be an admissible curve with one comer p, and let

\ ( --L k - (/2) )1"Sn = \rP to I I ,
t 11 1);:=1

where 4>(to) = po Then for each closed set E C Int r there is a constant j{

depending only on E such that II L,,['; zJ!1 ~ AI, z E E.

Proof Making a shift of coordinates along the t-axis, if necessary, \ve
may take to = O. Introduce tnle = (k - -nln, k = 1,2'0.. ,11, and adopt the
convention that the dependence of t,,1e on 11 is understood so that we write
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simply Ik for Ink' The conclusion of the theorem follows from (7) and
Lemma 2 together with the estimate

n n

L n I </J(ti ) - </J(tk)!-1 :(; M,
k=1 j=1

j=i=k

n = 1,2,... , (14)

M a constant. We actually prove something stronger than (14). Indeed,
since

nn I e27Titj
- e27Titk I = n,

i=1
i#k

k = 1,2,..., n

for all n, the estimate (14) follows if we can show that there is a constant M1

satisfying

(15)

for k = 1,2,... , n and all n. The remainder of this section is devoted to
proving (15).

Taking logarithms and using the notation of (5) we seek to prove that

n

L log ljJ(tk , t j )

1=1
i#k

(16)

is uniformly bounded from below. The technique used to establish this is
a standard one of obtaining bounds on

n 1

In(tk) = L log ljJ(lk , tj ) - n flog 1f(tk , t) dt.
j~1 0
i#k

We estimate [n(tk) differently depending upon the location of tl<' Take 8,
o< 1/2, such that the conclusions of Lemma 5 hold. If tk E [0, I - oJ then
ljJ(tk , .) E C1 and is bounded away from zero. For such tk's the uniform
boundedness of In(tl<) follows from Lemma 3. The remaining cases, tk E (0,0),
tk E (1 - 8, 1), recall II< 7'=- 0, require additional effort. The details are given
only for tl; E (0,8), the other situation can be handled similarly.

Suppose then II; E (0,8). Write In(tl<) as the sum of three terms: The first
consisting of the sum over those j, j ¥- k, for which 0 < t j < 0 and the
integral from °to 0; the second consisting of the sum over those j for which
8 :(; t i :(; 1 - 0 and the integral from 8 to 1 - 0; and the third consisting
of the remaining terms. Denote these three parts In'(t,,), I~(tk) and I;(tl<),
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respectively. We consider the second one, 1~(tlJ Suppose there are in = men)
nodes Xj in the interval [8, 1 - 8]; denote them T1 , ••. , Tot • The expression

is bounded, and an application of Lemma 3 shows that the quantity in
square brackets is also uniformly bounded. Thus l;'(tl,) is uniformly bounded
for t k E (0,8) and all 11.

Next we consider 1,,'(tk); the argument for l:(tk) requires no essentially
different techniques. If {t1 , ••• , tm} = {t j : 0 < t; < o} then l~(tk) + log .p(t", 'I,)
differs from

In In fmr"
A,,{t,,) = L log !f1(t le , t;) - -(I) . log </J(tle , t) dt

j=l min ~

by a bounded quantity. Thus we turn our attention to A,,(tk), and make use
of Lemma 5. If ()(:TT is the exterior angle at p, we have

+ (ex - 1) If log(tk + ti ) - ( n/l) J,m/" log(tk + t) dd,
j=l In n 0 i

and the expression in the first curly brackets is bounded (uniformly in tRo

and n) by Lemma 3 and the properties of X, while the expression in the
second curly brackets is bounded (uniformly in tk and n) by Lemma 4.

Finally, by Lemma 1, J~ log !f1(tl, , t) dt = 0 and therefore we have proved
that there is a constant M, independent of t" E (0, 8) and n, such that

I flog !f1(t/c , tj ) + (0< - 1) log 2tk I:(; M.
j~l '
j7'k

Here we have also used the uniform boundedness (in t;,J oflog XUk , t1J The
analogous estimates for other tk's are

I flog !f1(tk , t j ) I:(; lVI,
J=l
]¥=1i.

tk E (8, 1 - 8J,
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Noting that 1 < ex < 2 and 0 < 1/2, we have (ex - 1) log 2tk and
(ex - 1) log 2(1 - t k ) negative, and consequently these three inequalities
prove that (16) is bounded below, uniformly in tk and n. Our proof is
complete.

5. CURVES WITH SEVERAL CORNERS

Let T be a general admissible curve. One proves the uniform boundedness,
on closed subsets of lnt T, of the Lagrange interpolation operators L n [·; z]
in a manner similar to that used in the proof of Theorem 1. It is necessary
to subdivide the interval [0, 1] into several subintervals, each containing
only one preimage of a corner, and proceed as above. If the set of corners
{Pi} is contained in {z: z = 4>[(kIN) + r], k = 1,2,3,... , N}, as it must be
for some rand N by admissibility, then we take

Sn = {z: z = 4>[(k - }Z)INn + r], k = 1,2,... , Nn},

We summarize our results in

n = 1,2,....

THEOREM 2. Let T be an admissible Jordan curve. Then there is a set
L n [·; z] 0/Lagrange interpolation operators/or which (1) holds/or all/E '5'(T),
z E Int T, uniformly on closed subsets o/Int T.

Moreover, if the set 0/ corners {Pi} is contained in

{z: z = 4>[(kIN) + r], k = 1,2,... , N},

then one can take L n [/; .] to be the polynomial 0/ degree at most Nn - 1
which interpolates to / on the set {z: z = 4>[(k - t)lnN + r], k = 1, 2, ..., nN}.

It is clear that a certain flexibility exists in the selection of the sets Sn .
That is, if Sn generates polynomials which satisfy (1) for all / E '5'(T), and
3 rt consists of a set {Znk} with Znk "close enough" to Znk , then 3n must also
generate convergent polynomials. However, Lemma 4 is quite delicate and,
in this treatment, essential to our conclusions. It is not clear that one can
formulate a precise yet simple criterion for "close enough" in this context
as one can for the analogous question for smooth curves [6].
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